Download Prospectus


A Quick Guide to Thermal Stress

Thermal expansion and the resulting thermal stress are key concepts in engineering and physics. They describe how materials expand or contract when exposed to temperature changes. Understanding these principles is essential for designing structures and systems that can withstand environmental fluctuations without failure.

What is Thermal Expansion?

When materials like metals are heated, their molecules move faster and spread apart, causing expansion. Conversely, when cooled, they contract. This process generates internal stresses, known as thermal stress, which can lead to deformation or damage if not properly accounted for. Thermal expansion occurs in all materials to varying degrees, depending on their physical properties.

A common example is seen in railway tracks. In hot weather, the tracks expand and can buckle if no gaps or expansion joints are provided. Engineers carefully design these systems to allow for thermal movement while ensuring the tracks remain safe for trains.

On the other hand, thermal expansion can also be harnessed for practical use. For instance, in thermostats, metals expand and contract with temperature changes, activating a switch to control heating or cooling systems. This demonstrates how thermal expansion can be both a challenge and a useful tool in engineering.

Understanding the Coefficient of Linear Expansion

The amount a material expands per unit length for a one-degree temperature increase is called the coefficient of linear expansion, denoted as \( \alpha \). This value varies by material and is measured in \( \text{K}^{-1} \) (per Kelvin).

For example, steel has a coefficient of \( \alpha = 16 \times 10^{-6} \, \text{K}^{-1} \), meaning a 1-metre bar of steel will expand by \( 16 \times 10^{-6} \, \text{m} \) for every 1 K increase in temperature.

Temperature and Length Change

The relationship between temperature change and length change can be expressed mathematically:

\( \Delta L = L \cdot \alpha \cdot \Delta T \)

Where:

  • \( \Delta L \): Change in length (m)
  • \( L \): Original length (m)
  • \( \alpha \): Coefficient of linear expansion (\( \text{K}^{-1} \))
  • \( \Delta T \): Temperature change (K)

Worked Example: Expansion of an Iron Steam Pipe

Problem:

An iron steam pipe is 15.4 m long at 19°C. Determine the length of the pipe when the temperature rises to 410°C. Assume the coefficient of linear expansion of iron is \( 12 \times 10^{-6} \, \text{K}^{-1} \).

Solution:

Calculate the temperature change:

\( \Delta T = 410 – 19 = 391 \, \text{K} \)

Apply the formula:

\( \Delta L = L \cdot \alpha \cdot \Delta T \)

\( \Delta L = 15.4 \times (12 \times 10^{-6}) \times 391 = 0.072 \, \text{m} \)

The final length of the pipe is:

\( L_{\text{final}} = 15.4 + 0.072 = 15.472 \, \text{m} \)

Calculating Thermal Stress

When expansion is restricted, materials develop internal stresses known as thermal stress. This stress is given by the equation:

\( \sigma = E \cdot \alpha \cdot \Delta T \)

Where:

  • \( \sigma \) = Thermal stress (Pa or N/m²)
  • \( E \) = Young’s modulus of the material (Pa)
  • \( \alpha \) = Coefficient of linear expansion (\( \text{K}^{-1} \))
  • \( \Delta T \) = Change in temperature (K)

Worked Example: Thermal Stress in a Steel Rod

Problem:

A steel rod with a length of 1.2 m is fixed at both ends. The temperature increases from 20°C to 80°C. If the coefficient of linear expansion for steel is \( 12 \times 10^{-6} \, \text{K}^{-1} \) and Young’s modulus for steel is \( 200 \times 10^9 \, \text{Pa} \), calculate the thermal stress developed in the rod.

Solution:

Calculate the temperature change:

\( \Delta T = 80 – 20 = 60 \, \text{K} \)

Apply the thermal stress formula:

\( \sigma = (200 \times 10^9) \times (12 \times 10^{-6}) \times (60) \)

\( \sigma = 144 \times 10^6 \, \text{Pa} \)

The thermal stress in the steel rod is 144 MPa.

Why Thermal Stress Matters

Thermal stress is crucial in engineering because it directly impacts the safety and performance of materials and structures. Bridges, pipelines, and railway tracks must incorporate expansion joints and flexible seals to accommodate thermal movement without causing damage.

In industries like aerospace, aircraft components and spacecraft must endure rapid and extreme temperature changes. Similarly, in power plants and solar panels, thermal stress is a constant factor due to high operating temperatures.

Thermal expansion is also exploited in useful ways, such as in thermostats and bimetallic strips, where controlled expansion triggers mechanical movements. Engineers must carefully design systems to either accommodate or take advantage of thermal stress.

Thermal expansion and thermal stress are fundamental concepts with widespread applications in engineering. Whether in construction, aerospace, or precision electronics, understanding and mitigating thermal effects is essential for safety and efficiency.

Interested in our engineering courses?

Interested in civil or mechanical engineering? Find out more about all the civil engineering courses we have available by clicking here, and the mechanical engineering courses by clicking here.

Diploma in Civil Engineering

Diploma in Mechanical Engineering

Diploma in Mechanical Technology

Diploma in Renewable Energy

Diploma in Material Science

Diploma in Sustainable Construction

Diploma in Structural Engineering

Diploma in Thermodynamics

Diploma in Building and Construction Engineering

Diploma in Thermofluids

Higher International Certificate in Civil Engineering

Higher International Diploma in Civil Engineering 

Higher International Diploma in Mechanical Engineering

Higher International Certificate in Mechanical Engineering

Alternatively, you can view all our online engineering courses here.

Recent Posts

Types of Actuators: Principles, Mechanisms, and Applications

Types of Actuators: Principles, Mechanisms, and Applications Thermal actuators Thermal actuators convert temperature changes into linear movement or “stroke” by utilising the expansion and contraction of thermally sensitive materials within them.  They integrate both temperature sensing and actuation, making them valuable for various applications, including: 1. Temperature control 2. Fluid mixing and diverting 3. Freeze […]

Thermoelectric Transducers: Principles, Types, and Applications

Thermoelectric Transducers: Principles, Types, and Applications Introduction A temperature transducer is a device that converts a thermal quantity (temperature) into another physical quantity, such as mechanical energy, pressure, or an electrical signal, to allow for measurement or control. This conversion enables temperature to be easily monitored and utilised in various applications. A thermocouple is a […]

From Power Stations to Your Home: The Role of Transformers

From Power Stations to Your Home: The Role of Transformers Introduction Since their invention in the late 19th century, electromagnetic transformers have become a cornerstone of electrical power systems. Operating on Faraday’s law of electromagnetic induction, a transformer enables efficient energy transfer between circuits, typically to adjust voltage levels for generation, transmission, and utilization. Whether […]