Introduction to the Capacitor in Electrical Engineering
We can think of capacitors are short term ‘charge-stores’. In other words, capacitors just store charge inside them. A capacitor consists of two metal plates separated by a layer of insulating material called a dielectric.
There are 2 types of capacitor:
- Electrolytic capacitors. These hold much more charge and must be connected with the correct polarity, otherwise they can explode.
- Non-electrolytic. These hold less charge and can be connected either way round in a circuit.

How Does a Capacitor Work?
When two conducting plates are connected to a battery, electrons move towards one plate. The positive plate loses electrons , eventually leaving both plates with equal and opposite charge, +Q and -Q. When a capacitor is charged, we say that the capacitor has charge Q.

Define Capacitance
Capacitance, C = “the charge, Q, required to cause potential difference, V, in a conductor. It is measured in Farads”.
“1 Farad is the capacitance of a conductor, which has potential difference of 1 volt when it carries a charge of 1 coulomb”.

Charging a Capacitor Using D.C.
At any time, t, after the switch is closed, the charge, Q, on the capacitor can be calculated using Q=It where I = the current (Amps).
The variable resistor can be altered to keep the current constant.

Plot a graph of capacitance against voltage and since:

The gradient of the graph will equal the capacitance of that capacitor.
Charge Stored in a Capacitor
Electrical potential energy is stored when a capacitor is charged.

The area under this graph is equal to the energy stored = (½bh)
We can combine previous equations to give the following:


Charging and Discharging a Capacitor
When discharging, the current decreases with the potential difference, p.d. This decrease is exponential as can be seen below. Q0, V0 and I0 are all the initial charge, voltage and current through the capacitor at the initial discharge.

Decay Curve
Let us now examine the process of discharging the capacitor. Charge, Q, falls to 1/e of its initial value in a time equal to the time constant, RC.

When the initial charge is Q0,
- After RC seconds = 0.37 x Q0
- After 2RC seconds = 0.37 x 2 x Q0
- After nRC seconds = 0.37n x Q0.
The time taken to halve, T½, is always the same:


Example of Capacitors in Series and Parallel


Interested in electrical and electronic engineering? Find out more about all the electrical engineering courses we have available by clicking here.
Diploma in Electrical Technology
Diploma in Renewable Energy (Electrical)
Diploma in Electrical and Electronic Engineering
Alternatively, you can view all our online engineering courses here.
Recent Posts
How can buildings be classified?
How can buildings be classified? We spend a lot of time in various structures, more so than we ever do outside. There are different types of buildings we spend our time in and might be involved in constructing, so let’s have a look at how we can classify these buildings. Classification of buildings based on […]
What is Agile Software Development?
What is Agile Software Development? Agile development is an approach that is a combination of iterative and incremental sequences with a focus on process adaptability and customer satisfaction via a rapid delivery of the working product. Unlike the more traditional waterfall model previously used in development, where each step is completed sequentially, agile promotes an […]
What is the Software Development LifeCycle?
What is the Software Development LifeCycle? The SDLC (Software Development Life Cycle) is a breakdown of all the steps involved in the creation of software and will normally move through the following steps: Why is it used? The SDLC gives a business or team a tried-and-tested foundation for every software related project that they produce. […]