Download Prospectus


How can we select engineering materials?

In our previous article, we looked at elastic and magnetic hysteresis. In this article, we’re going to look at how we can select engineering materials.  In other articles, we have previously looked at the different materials and their properties.  However, it’s important that engineers understand how we can go about picking the correct material for our engineering application.

Material selection charts

These charts are a graphical way of representing material data.  As the majority of mechanical properties range of several orders of magnitude, the charts are produced with a logarithmic scale.

The image below shows an example chart for Young’s modulus versus density for certain material families, such as ceramics, wood, metals and so on:

, How can we select engineering materials?

On the Y-axis, you can see that the values for Young’s modulus are given in GPa.  With a logarithmic scale being used, a wide range of values from 0.01GPa (10MPa), i.e. very flexible materials, all the way through to 1000GPa (very stiff materials) can easily be shown.

On the x-axis we have material density, going from light materials through to heavy materials.  Each coloured ‘bubble’ represents a whole material family, so we can quickly see how different materials types measure.  For example, it is no surprise to see that wood and wood products are generally lower density (and therefore weight) than metals and alloys. 

Each ‘bubble’ can then be further split down to show the individual material properties within that classification. For example, the Young’s modulus vs density chart is now shown with metals and polymers expanded into more detail:

, How can we select engineering materials?

It’s worth noting how each specific material takes up a much smaller ‘bubble’, so now the chart starts to become much more useful for material selection purposes, and engineers can dive a lot deeper into selecting a specific material, for example copper rather than a generic ‘metal’.

Engineering designers have a challenging task in choosing the appropriate material for any given product.  It is common for them to have to consider many competing objectives and constraints at once – light and stiff, strong and cheap, tough and recyclable (or maybe all of these at once!).  Material selection in design is therefore a matter of assessing trade-offs between several competing requirements, and the material selection charts help to visualise these trade-offs, making it a lot easier for engineering designers to visualise how various materials might affect their design.  This makes it a lot easier to select an appropriate material overall.

Keep an eye out for our next articles looking at basic electrical parameters and how we calculate them.

Interested in our courses?

You can read more about our selection of accredited online mechanical and industrial engineering courses here.

Check out individual courses pages below:

Higher International Diploma in Mechanical Engineering

Higher International Certificate in Mechanical Engineering

Diploma in Mechanical Engineering

Diploma in Mechanical Technology

Higher International Diploma in Industrial Engineering

Higher International Certificate in Industrial Engineering

Diploma in Engineering Management

Diploma in Lean Manufacturing

Alternatively, you can view all our online engineering courses here.

Recent Posts

Types of Actuators: Principles, Mechanisms, and Applications

Types of Actuators: Principles, Mechanisms, and Applications Thermal actuators Thermal actuators convert temperature changes into linear movement or “stroke” by utilising the expansion and contraction of thermally sensitive materials within them.  They integrate both temperature sensing and actuation, making them valuable for various applications, including: 1. Temperature control 2. Fluid mixing and diverting 3. Freeze […]

Thermoelectric Transducers: Principles, Types, and Applications

Thermoelectric Transducers: Principles, Types, and Applications Introduction A temperature transducer is a device that converts a thermal quantity (temperature) into another physical quantity, such as mechanical energy, pressure, or an electrical signal, to allow for measurement or control. This conversion enables temperature to be easily monitored and utilised in various applications. A thermocouple is a […]

From Power Stations to Your Home: The Role of Transformers

From Power Stations to Your Home: The Role of Transformers Introduction Since their invention in the late 19th century, electromagnetic transformers have become a cornerstone of electrical power systems. Operating on Faraday’s law of electromagnetic induction, a transformer enables efficient energy transfer between circuits, typically to adjust voltage levels for generation, transmission, and utilization. Whether […]