Download Prospectus


Determine the deflection of beams due to combined loads

If you read our article deflection of beams with a single load, you’ll know about deflection of a beam.  Now we’re going to investigate how deflection affects a beam with combined loads.

Calculating deflections on a beam with combined loads.

Deflections from combined loading on a beam can be calculated by treating the load as a combination of simple loading.  This is called the method of superposition.  There’s a limitation on this method. Each independent load should not cause any appreciable change in the original length or shape of the beam.

Principle of Superposition

Based on the principle of superposition, a given beam and its loadings can be split into simpler beams and loadings. In the image below, the beam with the distributed load and the point load can be split into two beams. Basically, having one beam with the distributed load and the other with the point load.

Principle of superposition

Generally for a linearly elastic structure, the effect of several loads acting on a member is equal to the summation of the loads acting separately.

Assumptions for using the principle of superposition.

There are several assumptions when we use the principle of superposition. We should assume that the beam undergoes linear deflection, all deflections are small, elastic material properties, no shear deflection (i.e., no short, thick beams and normal boundary conditions).

Let’s look at an example to see what that means in practice.  A 2m load cantilever beam is carrying a load of 20 kN at the free end, and 30 kN 1m from the free end.  We’re going to find the slope and deflection at the free end.  Take E = 200 GN/m2 and I = 150 10-6 m4.

superposition Example Diagram

Due to the method of superposition, deflection at point B is the combined effect of the deflection due to 20 kN at B and 30 kN at the centre. 

Where 1 and y1 be the slope and deflection at point B due to 20 kN load, and 2 and y2 be the slope and deflection at point B due to the 30 kN load at the centre of the beam.

Calculate the deflection

E = 200 GN/m2 = 200 109 N/m2

I = 150 10-6 m4.

Load at the centre of beam = 30 kN = 30000 N

Load at the free end of beam = 20 kN = 20000 N

Length of beam = 2 m.

Now, y1 = PL33EI = 20103 233 200 109 150 10-6 = 1.775 10-3 m

Deflection at B due to the 30 kN load at the centre = y2 = Px26EI (3l – x) = 30000 126200 109 150 10-6(3 2 – 1)

y2 = 0. 883 10-3m

So, deflection due to both loads = y1 + y2 = (1.775 + 0.883) 10-3 m = 2.6110-3 m

Slope at point B due to the 20 kN load = 1 = Pl22EI = 20000 222 200 109 150 10-6 = 0.133 rad

Slope at B due to the 30 kN load = 2=Px22EI = 30000 122 200 109 150 10-6 = 0.05 rad

Finally, slope at B due to the combined effect of both loads = B = 1 + 2 = 0.133 + 0.05 = 0.1833 rad

We’re going to continue our series on deflection and loaded beams with even more articles on various calculations concerning various loads on a beam so stay tuned.

Interested in our courses?

Interested in civil or mechanical engineering? Find out more about all the civil engineering courses we have available by clicking here, and the mechanical engineering courses by clicking here.

Diploma in Civil Engineering

Diploma in Mechanical Engineering

Diploma in Mechanical Technology

Diploma in Renewable Energy

Diploma in Material Science

Diploma in Sustainable Construction

Diploma in Structural Engineering

Diploma in Thermodynamics

Diploma in Building and Construction Engineering

Diploma in Thermofluids

Higher International Certificate in Civil Engineering

Higher International Diploma in Civil Engineering 

Higher International Diploma in Mechanical Engineering

Higher International Certificate in Mechanical Engineering

Alternatively, you can view all our online engineering courses here.

Recent Posts

Understanding and Calculating Generator Efficiency and Output Parameters

Understanding and Calculating Generator Efficiency and Output Parameters Introduction The performance of a generator is often judged by how efficiently it converts mechanical energy into electrical energy. Understanding and calculating this efficiency,  along with other key output parameters such as voltage, current, power factor, and load, is essential for evaluating performance and ensuring reliable operation. […]

Essential Cooling and Protection Devices: How They Work and Why They Matter

Essential Cooling and Protection Devices: How They Work and Why They Matter Introduction Generators produce a significant amount of heat and electrical stress during operation, which can affect performance and lifespan if not properly managed. That’s where cooling and protection devices come in. These essential systems,  including fans, radiators, circuit breakers, and relays, work together […]

Justifying the Choice of Generators Based on Requirements and Characteristics

Justifying the Choice of Generators Based on Requirements and Characteristics Introduction Selecting the right generator isn’t just about power output,  it’s about finding a machine that meets specific operational needs, efficiency goals, and environmental conditions. Different applications demand different generator types, capacities, and features. In this article, we’ll explore how to justify the choice of […]