Download Prospectus


Determine the deflection of en-castre beams.

Following on from our previous article on deflection of beams with a combined load, we’re going to look at deflection in a different type of beam.

What is an en-castre beam?

En-castre beams, or fixed beams, have fixed supports at both ends. So, they don’t allow horizontal, vertical or rotational movement of that support.

The most important characteristic of this beam is that the slope and deflection are zero at both ends. 

The below image shows an en-castre beam:

diagram of an en-castre beam

Encastre beams can also be built in walls, as you can see in the image below:

an en-castre beam in construction

Advantages and Disadvantages of Encastre Beams

En-castre beams have some benefits, including:

  • For the same span and load, fixed beams have lower bending moments than simply supported beams.
  • Due to their support fixity, smaller deflections are encountered in fixed beams than in simply supported beams.

However, encastre beams also have some disadvantages.  In encastre beams, if the condition of fixity at the ends is disturbed, for example, by settlement and rotational yield of supports, the consequence is that large bending moments will be induced in the beam to counter this effect. Moreover, in the case where there are changes in temperature, this will create large stresses in the section. 

Structural Action of a Fixed Beam

When a fixed beam is subjected to loads, it bends, developing resisting moments and shears. The deflected shape of the beam is shown in this image:

diagram of deflection in an en-castre beam

Note that the slope and deflection at the ends A and B are zero, as they are restrained. The beam ‘sags’ for a part of its length in the middle and ‘hogs’ at the ends. This necessarily produces two points of inflection (contraflexure) corresponding to the change in the bending moment (BM).

Calculating Deflection of En-castre Beams

A standard data table can be used for the determination of deflection, moments and shear force in a fixed beam:

data table for deflection calculations

Let’s check out an example and see how we would go about calculating the deflection.  A fixed beam of 6m span is loaded with point loads of 150 kN at 2m from each support.  We’re going to find the maximum deflection.

Take E = 2 x 108 kN/m2 and I = 8 x 108 mm4

example of deflection

Load = 150 kN = 150000 N

Length of beam = 6m

I = 8 × 108 mm4 = 0.0008 m4

E = 2 × 108 kN/m2

For this loading arrangement case, the table gives the maximum deflection as

max = Pl36EI3a24l2-(al)3

Hence, substituting the values gives

= 1500006362 × 10110.0008322462-(26)3

= 0.03375(0.0833 – 0.037037)

max= 0.00156 m

Keep an eye out for future articles on more deflection calculations.

Interested in our courses?

Interested in civil or mechanical engineering? Find out more about all the civil engineering courses we have available by clicking here, and the mechanical engineering courses by clicking here.

Diploma in Civil Engineering

Diploma in Mechanical Engineering

Diploma in Mechanical Technology

Diploma in Renewable Energy

Diploma in Material Science

Diploma in Sustainable Construction

Diploma in Structural Engineering

Diploma in Thermodynamics

Diploma in Building and Construction Engineering

Diploma in Thermofluids

Higher International Certificate in Civil Engineering

Higher International Diploma in Civil Engineering 

Higher International Diploma in Mechanical Engineering

Higher International Certificate in Mechanical Engineering

Alternatively, you can view all our online engineering courses here.

Recent Posts

Types of Actuators: Principles, Mechanisms, and Applications

Types of Actuators: Principles, Mechanisms, and Applications Thermal actuators Thermal actuators convert temperature changes into linear movement or “stroke” by utilising the expansion and contraction of thermally sensitive materials within them.  They integrate both temperature sensing and actuation, making them valuable for various applications, including: 1. Temperature control 2. Fluid mixing and diverting 3. Freeze […]

Thermoelectric Transducers: Principles, Types, and Applications

Thermoelectric Transducers: Principles, Types, and Applications Introduction A temperature transducer is a device that converts a thermal quantity (temperature) into another physical quantity, such as mechanical energy, pressure, or an electrical signal, to allow for measurement or control. This conversion enables temperature to be easily monitored and utilised in various applications. A thermocouple is a […]

From Power Stations to Your Home: The Role of Transformers

From Power Stations to Your Home: The Role of Transformers Introduction Since their invention in the late 19th century, electromagnetic transformers have become a cornerstone of electrical power systems. Operating on Faraday’s law of electromagnetic induction, a transformer enables efficient energy transfer between circuits, typically to adjust voltage levels for generation, transmission, and utilization. Whether […]